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Abstract

This paper presents an analytical method based on the principle of continuous distribution of dislocation to model

curved cracks in solids of arbitrarily shaped finite geometries. Both the boundary of the finite body and the curved crack

are modelled by distributed dislocation. In this method the influence function of the dislocation along the finite body

boundary is reduced to a product of the Hilbert kernel with a normal function. Similarly the influence function for the

curved cracks is reduced to the product of Cauchy kernel and a normal function. This approach results in a system of

singular integral equations. Using the order decreasing method, the system is reduced to normal integral equations,

which are solved numerically. Stress intensity factors are evaluated for a well-known crack problem and two railhead

crack problems with a view to assessing the capability of the developed method to solve complex engineering problems.

� 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

Almost all engineering components crack under service load sometime during their effective life. In-

terface cracking including debonding in surface layers, or matrix and fibres in composites, cracks emanating

from rivet hole edges and railhead fracture are some examples. The cracked components under different
loading regimes respond differently and contribute to the growth of the cracks. Many crack problems with

simple geometries under a uniform state of stress field are presented in textbooks and monographs (for

example, Sih, 1962; Murakami et al., 1987, 1992). When complex finite geometries are encountered, finite

element (FE) modelling is nowadays often used, although the FE method requires significant effort in

defining mesh around the crack tip and remeshing where crack growth is modelled. With a view to saving

effort in remeshing for the problems containing moving discontinuities, various meshless methods (Moes

et al., 1999) are reported in the literature. Unfortunately it is difficult to impose essential boundary con-

ditions in the meshless methods. With a view to overcoming such difficulties, several researchers have
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coupled the FE with meshless methods––one of the recent papers in this topic uses a collocation approach

for the coupling (Xiao and Dhanasekar, 2002). All these evidences show that the numerical methods, al-

though well developed, still require significant research, particularly for fracture modelling. This paper

describes an analytical formulation based on distributed dislocation theory for such problems, in particular
where the cracks and the geometries are arbitrarily curved.

Since the pioneering work of Bilby et al. (1963, 1968) using continuous distribution of dislocation to

model cracks, the distributed dislocation method has been employed to analyse various crack problems.

For example, Erdogan and Gupta (1971) modelled an interface flaw in layered composites; Comninou and

Schmeuser (1979) and Comninou and Chang (1985) examined the interface cracks under tension–com-

pression or shear load with particular attention to partial closure and friction effects on radially emanating

cracks from circular holes; Freund and Kim (1991) modelled spiral cracks around a strained cylindrical

inclusion; Hills and Comninou (1985) and Nowell and Hills (1987) simulated edge cracks and open cracks
in an elastic half-plane; Erdogan et al. (1974), Zhao and Chen (1997) and Han and Chen (2000) investigated

the interaction between cracks and circular inclusions, subinterface cracks, and microvoids. The applica-

tions of this elegant method, however, were mainly focused on the physical aspects of crack problems and

geometries that are restricted to infinite mediums. Furthermore, only simple configurations of the cracks

such as straight lines, circles and combination of straight lines and circles are reported.

Very little research on modelling finite bodies by continuous distribution of dislocation is reported.

Sheng (1987) has presented a formulation of boundary element method by dislocation distribution. Dai

(2002) has reported a generalised method of modelling cracks in finite bodies by distributed dislocation
and dislocation dipoles. However, this method is also restricted to simple configurations of finite bo-

dies (for example, straight lines, circles or combinations of straight lines and circles). Subsequently, for

arbitrary shaped finite bodies the boundary is required to be divided into a number of boundary ele-

ments.

To model curved cracks in finite bodies of arbitrary shapes, the method of continuous distribution of

dislocation is extended in this paper. The influence function of the dislocation along the finite body

boundary is reduced to a product of the Hilbert kernel and a normal function, and the influence function

along the crack is reduced to the product of a Cauchy kernel and a normal function. The interaction
problem between the boundary and the crack provides a system of singular integral equations. The system

of singular integral equations is transformed into normal equations using the order decreasing method. The

system of normal integral equations is then solved numerically using the standard methods available in the

literature. The solutions provide the dislocation distribution functions along the boundary and the crack

faces.

The solution of the dislocation distribution functions and the stress fields induced from the dislocation

are presented first. A set of singular integral equations is then derived followed by a numerical integral

method transforming the singular integral equations into normal integral equations. Three examples are
presented to illustrate the validity of the method, namely a well-known standard crack problem and two

complex railhead crack problems.
2. Formulation

The stress (rxx, ryy , sxy) and displacement (ux, uy) in two dimensional (2D) elastic bodies are defined in

terms of the complex stress functions /ðzÞ and wðzÞ provided by Muskhelishvili (1963) as shown in (1) and
(2), respectively
rxx þ ryy ¼ 2bUðzÞ þ UðzÞc
ryy � rxx þ 2isxy ¼ 2½�zzU0ðzÞ þ WðzÞ


ð1Þ



Fig. 1. A dislocation in an infinite plane.
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2Gðux þ iuyÞ ¼ j/ðzÞ � zUðzÞ � wðzÞ ð2Þ
where the over bar sign represents the conjugate of the complex function; and UðzÞ ¼ /0ðzÞ, WðzÞ ¼ w0ðzÞ,
and j ¼ ð3� mÞ=ð1þ mÞ for plane stress, j ¼ 3� 4m for plane strain, in which m and G are Poisson�s ratio
and shear modulus of the material, respectively.

Bilby and Eshelby (1968) provided a solution for an edge dislocation at point za in an infinite plane as
shown in Fig. 1 as
UðzÞ ¼ A=ðz� zaÞ
WðzÞ ¼ A=ðz� zaÞ þ Aza=ðz� zaÞ2

ð3Þ
where
A ¼ Gðbx þ ibyÞ=½ipð1þ jÞ
 ð4Þ
in which bx and by are the Burgers vector defined as increased displacement around the point za.
The normal and the tangential stress components at a point z induced from the dislocation at za are

derived by substituting (3) into (1) and employing ðt; nÞ coordinates with incline angle h
rnn � isnt ¼ bxfxðz; zaÞ þ byfyðz; zaÞ ð5Þ
where
fxðz; zaÞ ¼
G

pið1þ jÞ
1

z� za

 
� 1

�zz� za
þ e2ih

1

z� za

"
þ ð�zz� zaÞ
ðz� zaÞ2

#!

fyðz; zaÞ ¼
G

pð1þ jÞ
1

z� za

 
þ 1

�zz� za
� e2ih

1

z� za

"
� ð�zz� zaÞ
ðz� zaÞ2

#! ð6Þ
2.1. Decomposition of original problem

Consider a finite body of arbitrary shape that is a cut-off from an infinite plane by a closed crack, as

demonstrated in Fig. 2. The original problem of a curved crack in a finite body may be regarded as the
superposition of two subproblems.



Fig. 2. Decomposition of original problem.
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The first subproblem is an infinite plane with a closed curved crack and the second subproblem is an

infinite plane with an open crack of arbitrary shape. Both the closed crack and the open crack are modelled

by continuous distribution of dislocation.
As shown in Fig. 2, the closed crack is denoted by C1 and the open crack by C2. The distribution

functions of Burgers vector bx and by are denoted by g1xðzaÞ and g1yðzaÞ along C1 and by g2xðzaÞ and g2yðzaÞ
along C2. The normal and tangential stress components at a point z on C1 or C2 induced by the distributed

dislocation are obtained from the integral of the stress induced by the dislocation at point za as shown in

(7).
rnnjðzÞ � isntjðzÞ ¼
Z
Cj

½gjxðzaÞfxðz; zaÞ þ gjyðzaÞfyðz; zaÞ
dza ð7Þ
where j ¼ 1 for C1 and 2 for C2. As shown in Fig. 2, the coordinate system (t, n) at point z moves and

rotates as point z moves along C1 or C2, and h in (6) is a function of z.
Superposition of the two subproblems provides the solution to the original problem. From the boundary

conditions along the cracks defining the finite body, the integral equation shown in (8) is derived.
Z
C1

g1xðzaÞfxðz; zaÞ þ g1yðzaÞfyðz; zaÞdza þ
Z
C2

g2xðzaÞfxðz; zaÞ þ g2yðzaÞfyðz; zaÞdza

¼ pnnðzÞ � ipntðzÞ z on C1 or C2 ð8Þ
where pnnðzÞ � ipntðzÞ are external normal and tangential boundary tractions prescribed to crack faces and

the finite boundary.

The displacements are single-valued around the contours C1 and C2. These conditions lead to a set of
integral equations in (9) and (10) for C1 and C2, respectively.
Z

C1

g1xðzaÞdza ¼ 0;

Z
C1

g1yðzaÞdza ¼ 0 ð9Þ
Z
C2

g2xðzaÞdza ¼ 0;

Z
C2

g2yðzaÞdza ¼ 0 ð10Þ
2.2. Singular integral equations

The set of integral equations shown in (8)–(10) provides the basis for solving the original problem. The

right side of these equations and the kernel functions (fxðz; zaÞ and fyðz; zaÞ) in the left side of these equations

are known functions, while the dislocation distribution functions, g1xðzaÞ, g1yðzaÞ, g2xðzaÞ, g2yðzaÞ, are un-
known functions.



Fig. 3. Representation of an arbitrary shape as an equivalent circle.
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From (6), it can be seen that (8) is a singular integral equation. It has been reported that the kernel in (8)
is the Cauchy kernel when the integral contour is a straight line (Zhao and Chen, 1997), and the Hilbert

kernel when the contour is a circle (Han and Chen, 2000). For arbitrary shaped integral contours, no

solution is yet provided in the literature. The kernel functions vary directly depending on the shape of the

boundary and that of the crack. However, as the order of these kernel functions does not change, we can

reduce them to products of the Cauchy or Hilbert kernels with normal functions.

In order to expand the kernel functions into the products of singular and normal functions, as shown in

Fig. 3, we express contour C1 by z1ðfÞ in terms of an auxiliary variable f.
The auxiliary variable denotes the hoop angle of a circle with the same hoop length, Lb, as C1 and has a

relation with the length l between a point z and a reference point o on C1 as
f ¼ 2pl=Lb ð11Þ

Substituting (11) into (6) and noting z and za corresponding to hoop angles f and s (see Fig. 3), respectively,
(6) is redefined as
fxðz; zaÞ ¼ F1xðf; sÞ=2 tanððs� fÞ=2Þ
fyðz; zaÞ ¼ F1yðf; sÞ=2 tanððs� fÞ=2Þ

ð12Þ
where F1xðf; sÞ and F1yðf; sÞ are normal functions whose values are determined by
F1xðf; sÞ ¼ 2fxðz1ðfÞ; z1ðsÞÞ tanððs� fÞ=2Þ
F1yðf; sÞ ¼ 2fyðz1ðfÞ; z1ðsÞÞ tanððs� fÞ=2Þ

ð13Þ
When s ¼ f, they are defined from (6) and (13) as the limit when s ! f
F1xðf; fÞ ¼
G

pið1þ jÞz01ðfÞ
z01ðfÞ
z01ðfÞ

 
� 1� e2ih

z01ðfÞ
z01ðfÞ

"
þ 1

#!

F1yðf; fÞ ¼
�G

pð1þ jÞz01ðfÞ
z01ðfÞ
z01ðfÞ

 
þ 1þ e2ih

z01ðfÞ
z01ðfÞ

"
� 1

#! ð14Þ
Similarly we express the contour C2 as z2ðsÞ function of a length from a point to midpoint of C2 and by

expanding the kernel functions into products of the Cauchy kernel with normal functions.
fxðz; zaÞ ¼ F2xðf; sÞ=ðs� fÞ
fyðz; zaÞ ¼ F2yðf; sÞ=ðs� fÞ

ð15Þ
Normal functions F2xðf; sÞ and F2yðf; sÞ are given by
F2xðf; sÞ ¼ ðs� fÞfxðz2ðfÞ; z2ðsÞÞ
F2yðf; sÞ ¼ ðs� fÞfyðz2ðfÞ; z2ðsÞÞ

ð16Þ
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When s ¼ f, they are defined from (6) and (16) as the limit when s ! f
F2xðf; fÞ ¼
G

pið1þ jÞz02ðfÞ
z02ðfÞ
z02ðfÞ

 
� 1� e2ih

z02ðfÞ
z02ðfÞ

"
þ 1

#!

F2yðf; fÞ ¼
�G

pð1þ jÞz02ðfÞ
z02ðfÞ
z02ðfÞ

 
þ 1þ e2ih

z02ðfÞ
z02ðfÞ

"
� 1

#! ð17Þ
The dislocation distribution functions g1xðsÞ and g1yðsÞ are normal functions for contour C1 with some

exceptional cases of edge cracks or notches that will be presented in a separate paper. The functions g2xðsÞ
and g2yðsÞ, however, are singular at crack tips. Thus they are redefined as
g2xðsÞ ¼ hxðsÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2
c � s2

p
g2yðsÞ ¼ hyðsÞ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2
c � s2

p � Lc 6 s6 Lc ð18Þ
where hxðsÞ and hyðsÞ are two normal functions; Lc denotes the half length of the crack.

Substituting (12), (15) and (18) into (8), a singular integral equation with Cauchy and Hilbert kernels is

derived
Z
C1

g1xðsÞF1xðf; sÞ þ g1yðsÞF1yðf; sÞ
2 tanððs� fÞ=2Þ dsþ

Z
C2

hxðsÞF2xðf; sÞ þ hyðsÞF2yðf; sÞffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2
c � s2

p
ðs� fÞ

ds

¼ pnnðfÞ � ipntðfÞ f on C1 or C2 ð19Þ
By using the properties of the two kernels
Z
C1

1

tanððs� fÞ=2Þ ds ¼ 0 ð20Þ
Z
C2

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2
c � s2

p
ðs� fÞ

ds ¼ 0 ð21Þ
the singular integral equation (19) is reduced to a normal equation shown in (22)
Z
C1

g1xðsÞF1xðf; sÞ � g1xðfÞF1xðf; fÞ þ g1yðsÞF1yðf; sÞ � g1yðfÞF1yðf; fÞ
2 tanððs� fÞ=2Þ ds

þ
Z
C2

hxðsÞF2xðf; sÞ � hxðfÞF2xðf; fÞ þ hyðsÞF2yðf; sÞ � hyðfÞF2yðf; fÞffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2
c � s2

p
ðs� fÞ

ds

¼ pnnðfÞ � ipntðfÞ f on C1 or C2 ð22Þ
To determine the unknown functions in (22), g1xðsÞ, g1yðsÞ, hxðsÞ and hyðsÞ, they are expanded into the first

kind of the Chebyshev series as shown in (23)
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g1xðsÞ ¼
XM
j¼0

A1xjTjðs=pÞ

g1yðsÞ ¼
XM
j¼0

A1yjTjðs=pÞ

hxðsÞ ¼
XM
j¼0

A2xjTjðs=LcÞ

hyðsÞ ¼
XM
j¼0

A2yjTjðs=LcÞ

ð23Þ
where TjðsÞ is the jth order Chebyshev polynomial. Substituting (23) and (18) into (9) and (10), the fol-

lowing relations are derived
XM=2

j¼0

A1xð2jÞ

,
ð1� 4j2Þ ¼ 0

XM=2

j¼0

A1yð2jÞ

,
ð1� 4j2Þ ¼ 0

A2x0 ¼ 0

A2y0 ¼ 0

ð24Þ
Considering the conditions g1xðpÞ ¼ g1xð�pÞ and g1yðpÞ ¼ g1yð�pÞ, two other relations are derived as
XM=2

j¼1

A1xð2j�1Þ ¼ 0

XM=2

j¼1

A1yð2j�1Þ ¼ 0

ð25Þ
Substituting (25) and (24) into (23), the four functions in (23) are redefined as
g1xðsÞ ¼
XMþ1

j¼2

A1xjT �
j ðs=pÞ

g1yðsÞ ¼
XMþ1

j¼2

A1yjT �
j ðs=pÞ

hxðsÞ ¼
XM
j¼1

A2xjTjðs=LcÞ

hyðsÞ ¼
XM
j¼1

A2yjTjðs=LcÞ

ð26Þ
where
T �
j ðsÞ ¼

TjðsÞ � 1=ð1� j2Þ when j is even
TjðsÞ � s when j is odd



ð27Þ
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Substituting (26) and (27) into (22), and employing the Chebyshev numerical integration method, a system

of linear equations is derived from (22)
XMþ1

j¼2

XN
k¼1

A1xjT �
j ðsk=pÞF1xðfl; skÞ � A1xjT �

j ðfl=pÞF1xðfl; flÞ
2 tanððsk � flÞ=2Þ

dk

þ
XMþ1

j¼2

XN
k¼1

A1yjT �
j ðsk=pÞF1yðfl; skÞ � A1xjT �

j ðfl=pÞF1yðfl; flÞ
2 tanððsk � flÞ=2Þ

dk

þ
XMþ1

j¼2

XN
k¼1

A2xjTjðsk=LcÞF2xðfl; skÞ � A2xjTjðfl=LcÞF2xðfl; flÞ
ðsk � flÞ

þ
XMþ1

j¼2

XN
k¼1

A2yjTjðsk=LcÞF2yðfl; skÞ � A2yjTjðfl=LcÞF2yðfl; flÞ
ðsk � flÞ

¼ pnnðflÞ � ipntðflÞ ð28Þ
where
sk ¼ cosðð2k � 1Þp=2NÞp on C1

sk ¼ cosðð2k � 1Þp=2NÞLc on C2

fl ¼ cosðð2l� 1Þp=2NÞp on C1

fl ¼ cosðð2l� 1Þp=2NÞLc on C2

dk ¼ sinðð2k � 1Þp=2NÞ

ð29Þ
in which the unknown coefficients A1xj, A1yj, A2xj and A2yj can be evaluated numerically.

Once these equations are solved, the stress intensity factors at the two tips of the crack are calculated

from the values of the normal functions, hxðsÞ and hyðsÞ, at the two tips as
K ¼ KI þ iKII ¼
Gip

ð1þ jÞ
ffiffiffiffiffiffiffiffi
pL2

p fhxðLcÞ þ ihyðLcÞg ¼ Gip
ð1þ jÞ

ffiffiffiffiffiffiffiffi
pL2

p
XM
j¼1

ðA2xj þ iA2yjÞ ð30Þ
for the tip s ¼ Lc, and
K ¼ KI þ iKII ¼
Gip

ð1þ jÞ
ffiffiffiffiffiffiffiffi
pL2

p fhxð�LcÞ þ ihyð�LcÞg ¼ Gip
ð1þ jÞ

ffiffiffiffiffiffiffiffi
pL2

p
XM
j¼1

ð�1ÞjðA2xj þ iA2yjÞ ð31Þ
for the tip s ¼ �Lc.

A MATLAB program was developed to solve the problem of curved cracks in arbitrary shaped finite

bodies subjected to loading and boundary conditions. In particular the parameters in (28) were set as
M ¼ 60, N ¼ 80, and m ¼ 0:3. The input to the program includes the configurations of the problem and

loading conditions, and the output of the program provides stress intensity factors at the crack tips.
3. Numerical examples

To assess the performance of the developed continuous distribution dislocation method, three examples

were considered. The first is a well-known crack problem (Murakami et al., 1987) and the second is a
railhead problem containing a straight crack inclined at various angles to the vertical symmetry axis of the

rail. The third problem is a railhead containing a curved crack.
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3.1. Example #1

A rectangular plate (height 2h, width 2w) that contains a straight central crack of length 2a, is subjected
to a uniform tensile stress perpendicular to the direction of the crack. The problem was solved for varying
lengths of cracks (Semi-crack length varying from zero to 0:7w). Two sizes of plates, one square h=w ¼ 1

and one rectangular, h=w ¼ 0:5, were also considered.

The variation of the stress intensity factor normalized by K0 ¼ r
ffiffiffiffiffiffi
pa

p
is shown in Fig. 4. The solutions

provided by Dai (2002) and those predicted by the current method are also shown in Fig. 4. It can be seen

that the normalized SIF tends towards unity as the crack length decreases to zero. This shows that the plate

can be regarded as an infinite plane for small cracks. As the crack size increases, the normalized SIF in-

creases and is far bigger than unity for larger cracks (in some case as high as 3).

It could be seen that the results of the current method agree very well with the results of Dai (2002) as
shown in Fig. 4. This agreement validates the method for simple standard cases. To illustrate the appli-

cability of the method to a somewhat more complex problem, a cracked railhead section was considered as

Example #2.
3.2. Example #2

A standard rail section UIC 71 (Profillids, 1995) was used for this purpose (Fig. 5). The overall height of

the section is 186 mm, the width of the head is 76 mm and the base is 160 mm. Since the rail web is relatively

long and thin, the boundary condition at the base was considered to be less significant to the railhead

stresses. Consequently the bottom surface of the rail foot is subjected to uniform force to balance a dis-

tributed uniform load P applied to the railhead symmetrically as shown in Fig. 5. Width of the load P , w, is
10 mm. The Poisson�s ratio and the Young�s modulus of the rail steel are assumed as 0.3 and 210 GPa,

respectively.

In this problem, a 5 mm crack is positioned at 165 mm above the rail foot within the railhead. The line of

crack was assumed to make an angle u with the vertical axis. When the angle u ¼ 0�, the cracked rail is said

to possess vertical split head (VSH) defect. The stress intensity factor (SIF) for mode I, KI, has a maximum

value for this VSH defect, while the mode II SIF, KII, is zero.
Fig. 4. Effect of crack size on mode I stress intensity factor.



Fig. 5. Profile of UIC71 rail section.

Fig. 6. Effect of crack angle on stress intensity factors.
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Analyses for the range of angles u from 0� to 45� were considered. The stress intensity factors, KI and

KII, were normalized using a factor K0 ¼ P
ffiffiffiffiffiffi
pa

p
. The normalized SIF are plotted against the crack angle u in

Fig. 6.

With a view to validating these results, FE analyses of the rail section containing the crack were carried

out. ABAQUS was used for this purpose. A typical mesh used for the analysis is shown in Fig. 7. Eight

noded plane strain elements (CPE8) were used. These elements were collapsed as quarter-point singular

elements around the crack tips. The mesh typically contained 1075 elements and 3347 nodes. SIFs were

extracted from interaction integrals (Shih and Asaro, 1988).
Fig. 6 also shows the results obtained from the FE analysis. It can be seen that the results obtained from

the method presented in this paper agree very well with those of the FE analysis, thus validating the new

method. From Fig. 6 it could be concluded that mode I SIF, KI, attains a maximum value for VSH defect

and reduces steadily with the increase in the angle. When uP 24�, KI becomes negative, implying that the

crack will close. The mode II SIF on the other hand increases with the increase in u angle. The results in



Fig. 7. FE mesh of a railhead containing a straight crack.
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which the mode I SIF provides negative values, as shown by the dashed lines in Fig. 6, lead to inappropriate
solutions. This is because that the crack faces near the tips for these cases are no longer traction-free due to

re-establishment of contact. The complex cases require further development of this method.
3.3. Example #3

For the railhead and loading shown in Example #2, a curved crack of length 3 mm was considered in the

third example as shown in Fig. 8. The crack has three segments––the central part being a straight line

inclined to the vertical axis at an angle of 45� connected to the two segments are curves anti-symmetric to

the horizontal axis as shown in Fig. 8. The two tips of the curved crack point to the vertical direction. This
example is used to calculate the SIF by the current distributed dislocation method and the FE method

(using ABAQUS). The finite element mesh used in the analysis is shown in Fig. 9.

The normalized SIF for modes I and II fracture obtained for the problem of railhead containing a curved

crack are listed in Table 1. It can be seen that the results obtained from the method presented in this paper

agree very well with those from the FE simulation, thus validating the distributed dislocations method for

arbitrary shaped cracks.
Fig. 8. Configuration of the curved crack.



Fig. 9. FE mesh around the curved crack.

Table 1

Normalized SIFs for the railhead containing a curved crack

Mode I SIF KI=K0 Mode II SIF KII=K0

Up tip Low tip Up tip Low tip

Current method 0.1064 0.1078 )0.1349 )0.1264
FE simulation 0.1044 0.1059 )0.1313 )0.1228
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The shape of the crack, not just its size, appears to affect the crack propagation potential. For example,
Example #2 has provided that the normalized SIF for mode I fracture for the railhead containing a VSH

defect is 0.086. The curved crack in Example #3 has shown that the normalized SIF for mode I fracture is

0.106 that is some 19% higher than that of the VSH defect, although both the VSH and curved cracks are 3

mm long each.
4. Conclusions

A new analytical method to solve singular integral equations is developed which extends the distributed

dislocation method to examine curved cracks in finite geometries of arbitrary shapes. It is proved in this

paper that this method can produce very accurate solutions for stress fields and crack tip parameters. The

method of distributed dislocations is elegant, easy to use and does not require meshing that consumes

significant human time.

A crack problem for railhead was studied. It is found that the normalized SIF for mode I fracture for

railhead containing a VSH defect is the maximum. As the angle of inclination increases, it has been found

that the normalized SIF for mode I fracture decreases in such a way that when the angle is larger than 24�,
the crack would close. The SIF for mode II fracture, however, has been found to increase with the increase

in the angle of inclination of the crack. When the crack is curved in such a way that its tips point vertically

(up or down), the normalized SIF for mode I fracture has been found to be some 19% larger than that

corresponding to the VSH defect.
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